

ਰਕਰਜ਼ੂ শেथ ਸ਼੍ਰਾਲਿਰ੍ਹਰ ਰੁਣਸ਼ਾਰ ਸ਼ਿਰ੍ਰਿਹੋਣਿਸ਼ ਟੇਰੋਰਿਫਾਸਿੰਫਿ

প্রথম বর্ষ স্নাতক (সম্মান) শ্রেণির অনুরূপ মডেল টেস্ট 📀

FEOS পূর্ণমান: ১০০ সময়: ১.৩০ মিনিট

$|PHYSICS|MCQ>12 \times 1 = 12$

৪০০ ছির অবস্থা থেকে মুক্তভাবে একটি প্রস্তর পড়ছে এবং পড়ত্ত অবস্থায় সবশেষ সেকেতে এটা সাকুল্যে যে দূরত্ব অতিক্রম করে তা প্রথম তিন সেকেন্ডে যে দূরত্ব অতিক্রম করে তার সমান। প্রস্তরটি বাতাসে ছিল-

A. 6sec

B. 5sec

D. None of these

 $_{02}$. একটি পানিপূর্ণ ক্য়ার গভীরতা 12 m এবং ব্যাস 1.8 m। একটি পাম্প 24মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। পানির ঘনত্ব $100~{
m kg/m}^3$ হলে পাম্পটির ক্ষমতা কত?

A. 1.67 H.P.

B. 3.34 H.P.

C. 6.68 H.P.

D. 26.72 H.P.

 $_{
m 03}$, এক মোল হাইড্রোজেন এবং এক মোল অব্ধ্রিজেনের ভর যথাক্রমে $2{
m g}$ এবং $32{
m g}$ হলে কোন এক নির্দিষ্ট তাপমাত্রায় অনুপাত আব্রিজেন অণুর মূল গড় বর্গবেগ হাইড্রোজেন অণুর মূল গড় বর্গবেগ

এর মান হবে-

04. সুপারকভাকটর সাধারণ কভাকটরের চেয়ে বেশি সুশৃংখল। যদি সুপারকভাকটর এবং সাধারণ কন্ডাকটর অবস্থায় এনট্রপি যথাক্রমে \mathbf{S}_{s} এবং \mathbf{S}_{n} হয় তবে নিম্নের কোনটি সঠিক?

 $A. S_s = S_n$

 $B. S_s > S_n$

C. $S_s < S_n$

D. $S_s \geq S_n$

05. 12W চিহ্নিত একটি বৈদ্যুতিক বাবের ভিতর দিয়ে 50s এ মোট 100C চার্জ প্রবাহিত হয়। এই সময়ে বাল্বের দুই প্রান্তের বিভব পার্থক্য কত?

A. 0.12V

B. 2.0V

C. 6.0V

D. 24V

06. একটি লঘা বিদ্যুৎ বাহী তারের নিকট কোন বিন্দুতে চৌম্বক ক্ষেত্র-

B. B = $\frac{\mu_0 \pi}{2a}$ C. B= $\frac{\mu_0 a}{2\pi}$

 $D.B = \frac{\mu_0 I}{2\pi a^2}$

07. $\frac{c}{\sqrt{2}}$ বেগে চলমান একটি কণার গতিশক্তি কত? [স্থির অবস্থায় কণাটির ভর \mathbf{m}_0]

A. $0.414 \text{m}_{0}\text{c}^{2}$

B. $0.25 \text{ m}_0\text{c}^2$

C. $1.414 \text{ m}_0\text{c}^2$

D. $2.0 \text{ m}_0\text{c}^2$

🕅 🐧 কান তেজদ্রিয় পদার্থের অর্ধায়ু 3 মিনিট হলে এর ক্ষয় ধ্রুবকের মান কত?

A. $1.85 \times 10^{-3} \text{ s}^{-1}$

B. $2.85 \times 10^{-3} \text{s}^{-1}$

C. $3.85 \times 10^{-3} \text{ s}^{-1}$

D. $4.85 \times 10^{-3} \text{ s}^{-1}$

09. একটি গাড়ির নিরাপদে বাঁক নেয়ার শর্ত হলো-

A. $v \le (\tan \theta rg)^{\frac{1}{2}}$

B. $v \le (tan \theta rg)$

C. $v > (tan\theta rg)$

D. $v > (\tan \theta rg)^{\frac{1}{2}}$

10. বৃত্তাকার পথে 72 km/h সমদ্রুতিতে চলমান কোন গাড়ীর কেন্দ্রমুখী ত্বরণ 1 m/s² হলে বুত্তাকার পথের ব্যাসার্ধ কত?

A. 150 m

B. 300 m

C. 400 m

D. 200 m

 একজন ছাত্র একটি সরল দোলকের দোলনকাল (T) দোলকের বিভিন্ন দৈর্ঘ্যের (L) জন্য পরিমাপ করল। নীচের কোন চলকের মানগুলো ছক কাগজে আঁকলে মূল বিন্দুগামী সরলরেখা হবে?

A. L এবং T

B. L এবং √T

C. L এবং T²

D. L² এবং T

^{12, 6,63} eV ফোটনের কম্পাংক হলো-

 $A.1.6 \times 10^{15} \text{ Hz}$

B. 6.63×10^{34} Hz

C. 4.14×10¹⁵ Hz

D. 4.14×10³⁴ Hz

WRITTEN PHYSICS

- 01. কত কোণে নিক্ষেপ করলে একটি প্রাসের আনুভূমিক পাল্লা তার সর্বোচ্চ উচ্চতার সমান হবে?
- 02. একটি কার্নো ইঞ্জিনের দক্ষতা 60%। যদি তাপ উৎসের তাপমাত্রা 450K তবে তাপ গ্রাহকের তাপমাত্রা কত?
- 03. কোনো বর্গক্ষেত্রের তিনটি কৌণিক বিন্দুতে যথাক্রমে $+6 \times 10^{-9} {
 m C}, -12 imes$ $10^{-9}\mathrm{C}$ এবং $14 \times 10^{-9}\mathrm{C}$ আধান স্থাপন করা হলো। চতুর্থ কৌণিক বিন্দুতে কত আধান স্থাপন করলে বর্গক্ষেত্রের কেন্দ্রে তড়িৎ বিভব শূন্য হবে?
- 04. 5.0cm ব্যাসার্ধের একটি পরিবাহী গোলকের চার্জ 4.0μC. কেন্দ্র থেকে 4.0cm দুরতে বিভব কত?

OMR SHEET

01. (A) (B) (C) (D)	05. A B O D	09. (A) (B) (C) (D)
02. (A) (B) (C) (D)	06. (A) (B) (C) (D)	10. (A) (B) (C) (D)
03. (A) (B) (C) (D)	07. (A) (B) (C) (D)	11. (A) (B) (C) (D)
04. (A) (B) (C) (D)	08. (A) (B) (C) (D)	12. (A) (B) (C) (D)

ANSWER ANALYSIS Mea

- 1		
1	01	B 02 A 03 B 04 C 05 C 06 A 07 A 08 C 09 A 10 C
	11	C 12 A
	প্রশ	ব্যাখ্যা [WRITTEN]
		$R = H_{\text{max}} \Rightarrow \frac{u^2 \sin 2\alpha}{g} = \frac{u^2 \sin^2 \alpha}{2g} \Rightarrow \sin 2\alpha = \frac{\sin^2 \alpha}{2}$
	01	$\Rightarrow 2 \sin \alpha \cos \alpha = \frac{\sin^2 \alpha}{2} \Rightarrow 4 \sin \alpha \cos \alpha = \sin^2 \alpha$
		$\Rightarrow \frac{4\sin\alpha\cos\alpha}{\cos^2\alpha} = \frac{\sin^2\alpha}{\cos^2\alpha} \Rightarrow 4\frac{\sin\alpha}{\cos\alpha} = \tan^2\alpha$
		$\Rightarrow 4 \tan \alpha = \tan^2 \alpha \Rightarrow \tan \alpha = 4 \Rightarrow \alpha = \tan^{-1}(4) :: \alpha = 76^0$
		এখানে উৎসের তাপমাত্রা $T_1 = 450 \text{K}$ $\eta = \left(1 - \frac{T_2}{450}\right) \times 100\% \Rightarrow \frac{60}{100} = \left(1 - \frac{T_2}{450}\right)$
	02	$\Rightarrow 0.6 = 1 - \frac{12}{450} \Rightarrow \frac{12}{450} = 1 - 0.6 \Rightarrow T_2 = 0.4 \times 450$
		∴ T₂ = 180K গ্রাহকের তাপমাত্রা 180K ধরি, বর্গক্ষেত্রটির (চিত্র অনুযায়ী) কৌণিক বিন্দুগুলো ৭৮
		থেকে কেন্দ্রের দ্রত্ব a এবং চতুর্থ বিন্দুর চার্জ q। আমরা জানি, বর্গন্ধেত্রের কেন্দ্রে বিভব = কেন্দ্র
		হতে চার কৌণিক বিন্দুতে বিভবের সমষ্টি
	03	
		$\therefore 0 = \frac{1}{4\pi\epsilon_0} \left(\frac{6 \times 10^{-9}}{a} - \frac{12 \times 10^{-9}}{a} + \frac{14 \times 10^{-9}}{a} + \frac{q}{a} \right)$ $\Rightarrow 6 \times 10^{-9} - 12 \times 10^{-9} + 14 \times 10^{-9} + q = 0$
		$\Rightarrow 8 \times 10^{-12} + q = 0 \Rightarrow q = -8 \times 10^{-12} \text{ C}$
		গোলকের কেন্দ্রে বিভব, পৃষ্ঠে বিভব বা অভ্যন্তরে যে কোন বিন্দুতে বিভব একই কথা।

দূরত্বে বিভব ,V = $\frac{1}{4\pi\epsilon_0}$. $\frac{q}{r} = 9 \times 10^9 \times \frac{4 \times 10^{-6}}{0.05} = 7.2 \times 10^5 \text{ V}$

ASPECT SERIES ++ ASPECT

∴ 4 cm দূরত্বে বিভব = 5 cm

CHEMISTRY	MCQ	> 12×1=12

01. 회>	সামগ্রীর	क्रना	পরিষ্কারক	মিশণে	থাকে-
--------	----------	-------	-----------	-------	-------

A. NH₃

B. HI

C. K₂CrO₄

D. K2Cr2O2

02. নির্দিষ্ট আয়তনের কোন তরল পদার্থকে সঠিকভাবে মেপে এক পাত্র থেকে অন্য পাত্রে নেয়ার জন্য কী ব্যবহাত হয়?

A. কনিক্যাল ফ্লাক

B, মাপন সিলিভার

C. পিপেট

D. বিকার

03. কোনটির ভর সবচেয়ে কম?

A. ইলেকট্রন

B. হাইড্রোজেন পরমাণু

C. নিউট্টন

D. প্রোটন

04. n = 4 এবং l = 3 উপকক্ষে সবচেয়ে বেশি ইলেকট্রন সংখ্যা হবে-

A. 2

B. 6

C. 10

D. 14

05. কক্ষ তাপমাত্রায় কোনটি তরল?

A. F.

B. Cl₂

C. Br₂

D. I₂

06. একটি মাত্র বিক্রিয়ক বিশিষ্ট একটি দ্বিতীয়ক্রম বিক্রিয়ার প্রারম্ভিক ঘনমাত্রা যখন 0.2 M তখন এর অর্ধায় 10 সেকেন্ড হয়। প্রারম্ভিক ঘনমাত্রা 0.1 M হলে অর্ধায় কত হবে?

A. 10 s

B. 20 s

C. 30 s

D 40

07. টয়লেট ক্লিনার প্রস্তুতিতে ব্যবহৃত হয় কোনটি?

A. উদ্বিজ তেল

B. লিকার অ্যামোনিয়া

C. মোম

D. ফেনল

C. 110.6°F

08. কত তাপমাত্রায় ক্যান্সার কোষ মারা যায়?

A. 104.6°F

B. 107.6°F

D. 114.6°F

09. একটি সিলিভারে 2 atm চাপে 27°C তাপমাত্রায় 5L বাতাস রাখা আছে। খুব ধীরে ধীরে বাতাসের চাপ দ্বিশুণ করা হলে বাতাসের আয়তন এবং তাপমাত্রা কত হবে?

A. 3.0L, 95°C B. 3.5L, 25°C C. 1.5L, 28°C D. 2.5L, 27°C 10. 20 gm পানিতে 10 gm NaCl মিশালে NaCl এর মোল ভগ্নাংশ কত?

A 0.1

B. 0.013

C. 0.143

D. 0.233

11. নিচের কোষটির তড়িৎ প্রবাহ বল (EMF) গণনা কর-

 $Fe/Fe^{2+}(0.3M)/Sn^{2+}(0.1M)/Sn$

 $E^{\circ}_{Fe/Fe^{2+}} = 0.44V, \quad E^{\circ}_{Sn/Sn^{2+}} = -0.14V$

A. 0.300 V

B. 0.581 V

C. 0.566 V D. 0.283V

12. নিচের কোনটি ন্যানোটিউব নয়?

A. গ্রাফাইট

B. কার্বন ন্যানোটিউব

C. গ্রাফিন

D. ফুলারিন

CHEMISTRY WRITTEN 4 x 2 = 8

- 01. রাজঅম্ল (Aqua Regia) কি? এতে সোনা বিগলন প্রক্রিয়া বিক্রিয়াসহ লিখ।
- ${f 02.}~~{f K_2Cr_2O_7}$ যৌগে ${f Cr}~$ এবং ${f Cl_2O_7}$ যৌগে ${f Cl}~$ এর জারণ সংখ্যা নির্ণয় কর।
- 03. हीका निर्थः (i) न्यारना कथा, (ii) न्यारना हिष्ठेव।
- 04. গ্রিসারিন থেকে জ্যাক্রোলিন পেতে কোনটি নিরুদক হিসেবে ব্যবহৃত হয়?

OMR SHEET

01. A B O D	05. (A) (B) (C) (D)	09. A B O D
02. A B C D	06. (A) (B) (C) (D)	10. (A) (B) (C) (D)
03. A B O D	07. (A) (B) (C) (D)	11. A B C D
04. A B O D	08. A B C D	12. A B C D

ANSWER ANALYSIS

প্রশ	ব্যাখ্যা [WRITTEN]
	নাইট্রিক এসিড ও গাঢ় হাইড্রেক্লোরিক এসিডের 1:3 আনুপাতিক মিশ্রণাবে
	जिल्लेशक वा शांक जल वटन ।
	রাজ অম্লে সোনা বিগলন প্রক্রিয়াঃ
01	$HNO_3 + 3HCl (conc) \rightarrow 2H_2O + NOCl + 2[Cl] \times 3$
	$2Au + 6[C1] \rightarrow 2AuCl_3$
	$2AuCl_3 + 2HCl (conc) \rightarrow 2HAuCl_4$
	$3HNO_3 + 11HCl (conc) + 2Au \rightarrow 2HAuCl_4 + 6H_2O + 3NOCl$
	Let, $K_2Cr_2O_7$ এ Cr এর জারণ সংখ্যা = x এবং
0.2	\therefore (+1) 2 + 2x + (-2) × 7 = 0 \therefore x = +6
02	আবার, Cl_2O_7 এ Cl এর জারণ সংখ্যা y হলে $2y + (-2) \times 7 = 0$
	∴ y = +7
	ন্যানো কণা: ন্যানো শব্দের সাধরণ অর্থ খুবই ক্ষুদ্র। 1-100 nm আকার বিশি
	কণাই হচ্ছে ন্যানো কণা।
03	ন্যানো টিউব: ফু লারিন ব্যবহার করে তৈরি কিছু অণু লমা টিউবের মত হয়
	যাদের এক প্রান্ত খোলা বা বন্ধ হতে পারে। এদেরকে 'ন্যানোটিউব' বা ন্যানে
	ওয়্যার বলে।
	নিরুদক KHSO4 এর সহায়তায় গ্রিসারিন থেকে ২ অণু অপসারিত হ
	ঝাঝালো গন্ধযুক্ত অ্যাক্রোলিন তৈরি হয়।
04	$CH_2-CH-CH_2 \xrightarrow{KHSO_4} H_2C = OH-CHO+2H_2O$
	OH OH OH

MATH MCQ > 12 × 1 = 12

 $01. \ A, \ B$ এবং C ম্যাট্রিক্সগুলোর মাত্রা যথাক্রমে $4 \times 5, \ 5 \times 4$ এবং 4×2 হলে $(A^T + B)C$ ম্যাট্রিক্সের মাত্রা হবে-

A. 5×4

B. 4×2

C. 5×2

D. 2×5

02. y = mx, $y = m_1 x$ এবং y = b সরলরেখাত্রয়ের দ্বারা গঠিত ত্রিভূজের বর্গএককে ক্ষেত্রফল হবে-

A. $\frac{b^2(m_1-m)}{2mm_1}$

B. $\frac{b^2(m-m)}{2mm_1}$

C. $\frac{b^2 |m-m_1|}{mm_1}$

D. $\frac{b^2 |m - m_1|}{2mm_1}$

03. "Permutation" শব্দটির বর্ণগুলোর মধ্যে স্বরবর্ণের অবস্থান পরিবর্তন না করে বর্ণগুলোকে কত রকমে পুনরায় সাজানো যাবে?

A. 360

B. 460

C. 459

D. 359

04. $2\cos\frac{\pi}{12} = ?$

A. $\sqrt{2+\sqrt{3}}$

B $\sqrt{3+\sqrt{3}}$

 $C.\sqrt{3+\sqrt{2}}$

D. $\sqrt{2+\sqrt{2}}$

 $05. \quad y = x^{1/x} \, \overline{\text{even}} \, \frac{\mathrm{d}y}{\mathrm{d}x} = ?$

6 , $x^3 + (2a - 3)x^2 - 8ax + 6a = 0$, $a \neq 0$ সমীকরণে	র একটি	भृन 3	এবং
অপর মূলঘয় সমান হলে a এর মান কত?			

A. -2, 1

B, -2, -1

C. -2, 2

- D. -2, -2
- $3x^2 4y + 6x 5 = 0$ পরাবৃত্তের দিকাক্ষের সমীকরণ নির্ণয় কর
 - A. 3y + 7 = 0
- B. x = -7
- C. x + y = 0
- D. x = y 3
- s. 3, 4, 6, 11 তথ্যসারির পরিমিত ব্যবধান কত?

- $_{9}$ একটি বিন্দুতে ক্রিয়াশীল m P নিউটন এবং 12N মানের দুইটি বলের লব্ধি $3\sqrt{7}N$ যার ক্রিয়ারেখা P-এর দিকে 90° কোণ উৎপন্ন করে। P এর মান-
 - A. 11N

B. 9N

C. 13N

- D. $2\sqrt{7}N$
- 0. 1 থেকে 100 এর ভেতর যে কোন একটি সংখ্যাকে ইচ্ছামত নিঙ্গে সেটি একাধিক মৌলিক সংখ্যার গুনফল হওয়ার সম্ভাবনা কত?
 - A. 74%

B. 75%

C. 25%

- D. 26%
- অবাধে পড়ন্ত কোনো বস্তু 4-তম সেকেন্ডে কত মিটার দূরত্ব অতিক্রম করবে?
 - A. 50.2

B. 44.3

C. 39.2

- D. 34.3
- 2. Q(2, 3, -1) এবং P(4, -3, 2) হলে |PQ| = কত?
 - A. 5

B. 6

C. 7

D. 10

MATH

- = 0 হবে? l. x-এর কোন মানের জন্য -5
- 2. (7, 5) এবং (-2, -1) বিন্দুদ্বয়ের সংযোজক রেখার সমত্রিখন্ডক বিন্দুর স্থানাংক
- $\frac{1}{2}$ k-এর মান কত হলে y=kx (1+x) বক্ররেখার মুলবিন্দুতে তার স্পর্শক x-অক্ষের সাথে 30° কোণ উৎপন্ন করবে?
- 4. sinφ + cosφ = 1 হলে sinφ − cosφ এর মান-

OMR SHEET

	0000	an an an an
01. (A) (B) (C) (D)	05. (A) (B) (C) (D)	09. (A) (B) (C) (D)
12. A B C D	06. (A) (B) (C) (D)	10. (A) (B) (C) (D)
	100. (A) (B) (C) (B)	
MARRIA	07. (A) (B) (C) (D)	11. (A) (B) (C) (D)
03. (A) (B) (C) (D)	07. (A) (B) (C) (D)	11. 6 6 6
		12 00 00 00
U4. (A) (B) (C) (D)	08. (A) (B) (C) (D)	12. (A) (B) (C) (D)

ANSWER ANALYSIS

						M	G (4)							(15)	1	
02 D	03	D	04	À	05	В	06	D	07	Α	08	В	09	В	10	В
112 C																

প্র	वाधा [WRITTEN]				
0.1	$x^{2}(-5-0) - x(-15-0) + 2(0-0) = 0$ 4 , $-5x^{2} + 15x + 0 = 0$				
01 $\frac{x^2(-5-0)-x(-15-0)+2(0-0)=0}{41, x^2-3x=0}$ $\frac{1}{41, x^2-3x=0}$ $\frac{1}{41, x^2-3x=0}$ $\frac{1}{41, x^2-3x=0}$ $\frac{1}{41, x^2-3x=0}$ $\frac{1}{41, x^2-3x=0}$					
01 $\frac{x^2(-5-0)-x(-15-0)+2(0-0)=0}{\pi i, x^2-3x=0}$ কা, $x(x-3)=0$ কা, $x=0,3$ কিন্দ্রয়ের সমত্রিখন্ডক কিন্দ্রয়ের একটি কিন্দ্রয়েকে 1:2 অনুপাতে ও 2:1 অনুপাতে অন্তর্বিভক্তকারী কিন্দু । 02 $\frac{1}{2}$ একটি কিন্দু $\frac{1}{2}$ $$	বিন্দুদ্বয়ের সমত্রিখন্তক বিন্দুদ্বয়ের একটি বিন্দুদ্বয়কে 1:2 অনুপাতে ও অপরটি				
	বিন্দুঘয়ের সমত্রিখন্তক বিন্দুঘয়ের একটি বিন্দুঘয়কে $1:2$ অনুপাতে ও $2:1$ অনুপাতে অন্তর্বিভক্তকারী বিন্দু । \therefore একটি বিন্দু $\left(\frac{1(-2)+2.7}{1+2},\frac{1(-1)+2.5}{1+2}\right)=(4,3)$ এবং অপর বিন্দুটি $\left(\frac{2(-2)+1.7}{2+1},\frac{2(-1)+1.5}{2+1}\right)=(1,1)$ $y=kx+kx^2$ $\therefore \frac{dy}{dx}=k+2kx$; এখন, মূলবিন্দুতে $\frac{dy}{dx}=k+2k.0=k$ \therefore মূলবিন্দুতে স্পর্শকটি x -অক্ষের সাথে 30° কোণ উৎপন্ন করলে,				
01 $\frac{x^2(-5-0)-x(-15-0)+2(0-0)=0}{41,-5x^2+15x+0}$ বা, $x^2-3x=0$ বা, $x(x-3)=0$ বা, $x=0,3$ বিন্দ্রয়ের সমান্রিখন্তক বিন্দ্রয়ের একটি বিন্দুর্য়কে 1:2 অনুপাতে ও 2:1 অনুপাতে অন্তর্বিভক্তকারী বিন্দু । 102 ে একটি বিন্দু $\left(\frac{1(-2)+2.7}{1+2},\frac{1(-1)+2.5}{1+2}\right)=(4,3)$ এবং অপর বিন্দুটি $\left(\frac{2(-2)+1.7}{2+1},\frac{2(-1)+1.5}{2+1}\right)=(1,1)$ $y=kx+kx^2$ $\therefore \frac{dy}{dx}=k+2kx$; এখন, মূলবিন্দুতে $\frac{dy}{dx}=k+2k.0=k$ $\therefore \frac{dy}{dx}=\tan 30^\circ=\frac{1}{\sqrt{3}}$ $\therefore k=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$ $\sin \phi + \cos \phi = 1 \Rightarrow \sin^2 \phi + \cos^2 \phi + 2\sin \phi \cos \phi = 1$ $\Rightarrow 1+2\sin \phi \cos \phi = 1 \Rightarrow 2\sin \phi \cos \phi = 0$ আবার, $(\sin \phi - \cos \phi)^2=\sin +2\phi + \cos^2 \phi \cos \phi = 1-0=1$					
	অপর বিন্দুটি $\left(\frac{2(-2)+1.7}{2+1}, \frac{2(-1)+1.5}{2+1}\right) = (1,1)$				
	$\frac{dy}{dx} = k + 2kx$; এখন, মুলবিন্দুতে $\frac{dy}{dx} = k + 2k \cdot 0 = k$				
0.2	dx dx				
03	01 $\frac{x^2(-5-0)-x(-15-0)+2(0-0)=0}{4!}$ বা, $5x^2+15x+0=\frac{1}{4}$ বা, $x^2-3x=0$ বা, $x(x-3)=0$ বা, $x=0,3$ বিন্দ্ররের সমত্রিখন্ডক বিন্দ্ররের একটি বিন্দ্ররেকে 1:2 অনুপাতে ও বিন্দ্ররের সমত্রিখন্ডকরারী বিন্দ্র। 2:1 অনুপাতে অন্তর্বিভন্তকরারী বিন্দ্র। :. একটি বিন্দু $\left(\frac{1(-2)+2.7}{1+2},\frac{1(-1)+2.5}{1+2}\right)=(4,3)$ এবং অপর বিন্দুটি $\left(\frac{2(-2)+1.7}{2+1},\frac{2(-1)+1.5}{2+1}\right)=(1,1)$ $y=kx+kx^2$:. $\frac{dy}{dx}=k+2kx$; এখন, মূলবিন্দুতে $\frac{dy}{dx}=k+2k.0=k$:. মূলবিন্দুতে স্পর্শকটি x-অন্ফের নাথে 30° কোণ উৎপন্ন করলে, $\frac{dy}{dx}=\tan 30^\circ=\frac{1}{\sqrt{3}}$:: $k=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$ $\sin \phi + \cos \phi = 1 \Rightarrow \sin^2 \phi + \cos^2 \phi + 2\sin \phi \cos \phi = 1$ $\Rightarrow 1+2\sin \phi \cos \phi = 1 \Rightarrow 2\sin \phi \cos \phi = 0$ আবার, $(\sin \phi - \cos \phi)^2=\sin +2\phi + \cos^2 \phi \cos \phi = 1-0=1$				
02 5	$\frac{dy}{dx} = \tan 30^\circ = \frac{1}{\sqrt{3}} \therefore k = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$				
	বিশ্বদ্বয়ের সমত্রিখন্তক বিশ্বদ্বয়ের একটি বিশ্বদ্বয়েকে 1:2 অনুপাতে ও 2:1 অনুপাতে অন্তর্বিভক্তকারী বিন্দু । ∴ একটি বিন্দু $\left(\frac{1(-2)+2.7}{1+2},\frac{1(-1)+2.5}{1+2}\right)=(4,3)$ এবং অপর বিন্দুটি $\left(\frac{2(-2)+1.7}{2+1},\frac{2(-1)+1.5}{2+1}\right)=(1,1)$ $y=kx+kx^2$ ∴ $\frac{dy}{dx}=k+2kx$; এখন, মূলবিন্দুতে $\frac{dy}{dx}=k+2k.0=k$ ∴ মূলবিন্দুতে স্পর্শকটি x-অক্ষের সাথে 30° কোণ উৎপন্ন করলে, $\frac{dy}{dx}=\tan 30^\circ=\frac{1}{\sqrt{3}}$ ∴ $k=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$ $\sin \phi + \cos \phi = 1 \Rightarrow \sin^2 \phi + \cos^2 \phi + 2\sin \phi \cos \phi = 1$ ⇒ $1+2\sin \phi \cos \phi = 1 \Rightarrow 2\sin \phi \cos \phi = 0$ আবার, $(\sin \phi - \cos \phi)^2=\sin +2\phi + \cos^2 \phi \cos \phi = 1-0=1$				
0.4	$\Rightarrow 1 + 2\sin\phi\cos\phi = 1 \Rightarrow 2\sin\phi\cos\phi = 0$				
04	আবার, $(\sin\phi - \cos\phi)^2 = \sin+2\phi + \cos^2\phi \cos\phi = 1 - 0 = 1$				
	$\therefore \sin\phi - \cos\phi = \pm 1$				

$BIOLOGY|MCQ>12 \times 1 = 12$

- 01. নিউক্লিয়াস আবিষ্কার/ বর্ণনা করেন-
 - A. রবার্ট হুক
- B. রবার্ট ব্রাউন C. লুই পাম্বর
- D. ফ্রেমিং
- 02. চোখের ছানির অস্ত্রপাচারে যে এনজাইম ব্যবহার করা হয়-
 - A. পেপসিন
- B. ক্যাটালেজ
- C. ট্রিপসিন
- D. সেলুলেজ
- 03. কোন জীবাণুর কারণে আলুর বিলম্বিত ধ্বসা রোগ হয়? B. Phythium aphanldermatum
 - A. Puccinio graminis
 - C. Phytophthora infestans
- D. Penicillium notatum
- 04. গমের বৈজ্ঞানিক নাম কি?
 - A. Hordeum vulgare
- B. Zea mays
- C. Saccharum officinarum
- D. Triticum aestivum
- 05. সালোকসংশ্রেষণে উড়ুত অক্সিজেন-এর উৎস কোনটি?
 - A. CO
- B. H₂O
- C. স্টোমা
- D. গ্রানা
- 06. রিকম্বিনেন্ট DNA প্রযুক্তিতে যে এনজাইম দিয়ে প্লাজমিড ও প্রাণিকোম্বের DNA কে কাটা হয় তাকে বলে?/যে এনজাইম দিয়ে প্লাজমিড ছেদন করা হয়-
 - A. রেস্ট্রিকশন এনজাইম
- B. লাইগেজ এনজাইম
- C. RNAse
- D. মন্টেজ এনজাইম
- 07. ম্যান্টল কোন পর্বের প্রাণীতে দেখা যায়?
 - A. Protozoa
- B. Arthropoda
- C. Mollusca
- D. Echinodermata
- 08. স্নেহজাতীয় খাদ্য পরিপাকে কোন উৎসেচক অংশগ্রহণ করে?
 - A. লাইপেজ
- B. न्याकराज
- C. প্রোটিয়েজ

- 09. মধ্যকর্ণে সংক্রমণ জনিত প্রদাহকে কী বলে?
 - A. সাইনুসাইটিস
- B. এমফাইসেমা
- C. ওটিটিস মিডিয়া
- D. এলার্জি
- মানবদেহের মুখমন্ডলীয় অস্থি সংখ্যা কয়টি?

- D. 38

D. মল্টেড

- 11. কোনটি থেকে স্নায়ুতন্ত্র গঠিত হয়?
 - A. এক্টোডার্ম

- B. এক্টোডার্ম ও মেসোডার্ম
- C. এভোডার্ম
- D. মেসোডার্ম
- 12. 'জেনেটিক্স' শব্দটি সর্বপ্রথম কে ব্যবহার করেন?
 - A. মেডেল

- B. ওয়াটসন

C. ডারউইন

D. বেটসন

WRITTEN BIOLOGY $4 \times 2 = 8$

- 01. অসমোরেগুলেশনে বৃক্কের ভূমিকা কী?
- 02. DNA ও RNA এর মধ্যে পাঁচটি পার্থক্য লিখ?
- 03. পার্থেনোজেনেসিস ও পার্থোনোকার্পির মধ্যে পার্থক্য লিখ?
- 04. করোটিক স্নায়ু বলতে কি বুঝ? সংবেদী ও মোটর স্নায়ু বলতে কি বুঝ?

OMR SHEET

01. (A) (B) (C) (D)	05. A B C D	09. (A) (B) (C) (D)
02. (A) (B) (C) (D)	06. (A) (B) (C) (D)	10. (A) (B) (C) (D)
03. A B C D	07. (A) (B) (C) (D)	11. A B O D
04. (A) (B) (C) (D)	08. (A) (B) (C) (D)	12. (A) (B) (C) (D)

ANSWER ANALYSIS

									M	B(A)									
01	В	02	(03	C	04	D	05	В	06	Α	07	C	08	A	09	C.	10	D
11	A	12	D																

**	X 12 B							
প্রশ	ব্যাখ্যা [WRITTEN]							
01	অসমোরেগুলেশনে প্রধান অঙ্গ হচ্ছে বৃক্ক। দেহ অভ্যন্তরের কোষকলায় বিদ্যমান							
	পানি ও বিভিন্ন লবণের ভারসাম্য রক্ষার কৌশলকে অভিশ্রবর্ণ নিয়ন্ত্রণ ব							
	অসমোরেগুলেশনে বলে। অসমোরেগুলেশন প্রক্রিয়া বলতে কোষের অন্তঃপরিবেশ							
	এবং বহিঃপরিবেশের মধ্যকার অভিস্রবণিক চাপের সমতা রক্ষাকে বোঝায়।							
	DNA ও RNA এর মধ্যে পাঁচটি পার্থক্যঃ							
	DNA	RNA						
	দ্বিস্ত্রক, প্যাচানো বা ঘুরানো সিঁড়ির		একসূত্রক, শিকলের ন্যায়					
	মতো							
02	i. এতে থাকে ডিঅব্রির	i. এতে থাকে রাইবোজ স্যুগার						
	স্যুগার		ii. RNA এর পাইরিমিডিনে					
	ii. DNA এর পাইরিমিডিনে থাইমিন							
	ও সাইটোসিন বেস থাকে		शास्क					
	অনুলিপনের মাধ্যমে নতুন DNA		নতুনভাবে RNA সৃষ্টি হয়।					
	সৃष्टि दश		কোনো অনুলিপন হয় না					
	এতে নিউক্লিয়োটাইডের সংখ্যা অনেক							
	বেশি		অনেক কম					
	অধিক পরিমাণে অতিবেগুণি রশ্মি		তুলনামূলকভাবে কম অতিবেগুণি					
	শোষণ করে	রশ্যি শোষিত হয়						
	পার্থেনোজেনেসিস ও পার্থোনোকার্পির মধ্যে পার্থক্য:							
	পার্থেনোজেনেসিস	পার্থোনোকার্পির						
	নিষেক ছাড়া ভ্রূণ সৃষ্টির প্রক্রিয়া	ছাড়া ফল সৃষ্টির প্রক্রিয়া						
03	প্রজননের একটি উপায়	া এর কোনো ভূমিকা নেই						
	কিছু উদ্ভিদ ও প্ৰাণীতে ঘটে	লদ উদ্ভিদে ঘটে						
	নৌসাছি তামাক পিপড়া	মলালেবু, কলা, তরমুজ, পেয়ারা, আঙ্গুর						
-1.	<u>↑</u> কলেটিক লায় : যেসৰ লায় ম	স্তিকের	বিভিন্ন অংশ থেকে জোড়ায় অস সৃষ্টি					
	হয়ে করোটিকার বিভিন্ন ছিদ্রপথে বের হয়ে দেহের বিভিন্ন অবে বিস্তৃত হয়							
	অন্তর করোটিক শায় বলে।							
	🖎 সংক্রেটী স্থায় যেসব স্থায় দেহের প্রান্তীয় অঙ্গাদী বা সংবেদী অঙ্গ থেকে স্থায়							
	केकीलन तकत करत कसीय सायुक्त नित्य याय समन सायु छलाक							
)4	সংবেদী স্নায়ু বলে। এ ধরনের স্নায়ু বিভিন্ন নামে পরিচিত। যেমন- অন্তর্বাহী,							
	সংক্রাম্মী অনুভতিবাহী ইত্যাদি।							
4	 চেষ্টীয় স্লায়ু: কেন্দ্রীয় স্লায়ুতয় 	एएएक नि	দর্দেশ বহন করে যেসব স্নায়ু নির্দিষ্ট					
1		- व्या	य साथ उरल । ००१लारक उक्तिये					

অঙ্গে পৌছে দেয় সেসবগুলোকে চেষ্টীয় শ্লায়ু বলে। এগুলোকে বহিৰ্বাহী

আজ্ঞাবাহী ইত্যাদি নামেও পরিচিত।

ENGLISH MCQ $12 \times 1 = 12$

- 01. Which one is the correct sentence given below?
 - A. You, He and I went there.
 - B. He, you and I went there.
 - C. I, you and he went there.
 - D. You, I and he went there.
- 02. Synonym for 'courteous ' is-
 - A. Intelligent
- B. Well off
- C. Polite
- D. Kindness
- 03. Choose the correct group verb to complete the following sentence: Why are you looking much _
 - A. run down
- B. run across

C. run into

- D. run off
- 04. "To fight shy of" means-
 - A. Adopt

- B. To snatch
- C. To quarrel
- D. To avoid
- 05. "তিনি কদাচিৎ মিখ্যা বলেন" Which one is the correct English translation?
 - A. He sometimes tells a lie.
- B. He seldom tells a lie.
- C. Somewhat he tells a lie.
- D. He tells a lie sometimes.
- 06. Find the incorrectly spelt word.
 - A. Committee
- B. Receive
- C. Psychology
- D. Separate
- 07. 'Bangladesh is over populated' what is the meaning of the underlined word mentioned above?
 - A. Many people
- B. Too many people
- C. So much people
- D. Too much people
- 08. Choose the correct form of sentence.
 - A. I wait your decision.
- B. I wait to your decision
- C. I await for your decision
- D. I await your decision
- 09: Correct English translation of Bengali phrase "টাকায় টাকা আনে' is---
 - A. Money makes money
- B. Money bring money
- C. Money beings money
- D. Money begets money
- 10. The right form of verb (to say) is used in which of the following sentence?

 - A. I heard him saying this. B. I heard him to say this.
 - C. I heard him said this.
 - D. I heard him to have said this.
- 11. Which one of the following is correct indirect speech of the sentence. "He said, do you know me"?
 - A. He inquired, whether i knew him.
 - B. He asked me whether i knew him.
 - C. He told me that if i knew him.
 - D. He asked me that if i know him.
- 12. A person whose 'head' is in the 'Clouds' is_
 - A. A day dreamer
- B. Useless

C. Proud

- D. An aviator
- ++ ASPECT SERIES ++ ASP

WRITTEN **ENGLISH** $4 \times 2 = 8$

11. As a child you must have been told to greet your elders and visitors to your home according to your culture and tradition. You must also have been taught to be polite in company and keep quiet while others, especially your elders, spoke. Possibly, you at times grudged such schooling. Possibly, at times you even protested such disciplining. Now, certainly you know that you can't always behave the way you want specially in the presence of others. There are rules of behaviour you have to follow in a company. We are social beings and have to consider the effect of our behaviour on others, even if we are at home and dealing with our family members. We have two terms to describe our social behaviour-'etiquette' and 'manners'. 'Etiquette' is a French word and it means the rules of correct behaviour in society. The word 'manners' means the behaviour that is considered to be polite in a particular society or culture. Manners can be good or bad. For example, it is a bad manner to speak with food in one's mouth. No one likes a bad mannered person. Remember that etiquette and manners vary from culture to culture and from society to

We learn etiquette and manners from our parents, families and various institutions, such as schools, colleges or professional bodies. There are rules of behaviour for all kinds of social occasions and it is important to learn them and practice them in everyday life. The manners that are correct in a wedding reception will not do in a debating club. Therefore, we have to be careful about etiquette and manners. We know how important it is to say 'please' and 'thank you' in everyday life. A few more polite expressions such as 'pardon me'. 'excuse me', 'may I', are bound to make your day smooth and pleasant.

Answer the following Questions:

- From your reading of the passage write the differences between etiquette and manners.
- What rules of behaviour should we follow as social beings?
- Why is it important to learn the rules of behaviour?
- Why etiquette and manners vary? Give reasons and examples.
- 2 Lockdown is being carried out in our country to prevent this Corona infection to the mass people. Have you ever thought how much impact and effect of this long quarantine time have done your life.

Now, write a short paragraph on this subject.

"Impacts and effects of this recent long quarantine time in our life."

	OMR SHEET	
11. (A) (B) (C) (D) (12. (A) (B) (C) (D) (14. (A) (B) (C) (D) (D) (14. (A) (B) (C) (D)	05. (A) (B) (C) (D) (06. (A) (B) (C) (D) (07. (A) (B) (C) (D) (08. (A) (B) (C) (D)	09. A B C D 10. A B C D 11. A B C D 12. A B C D

	VCIC
PRICIALED	ANALYSIS
VMPAAFI	74.

L					Trans.		100	724 A	-6	
			Mer.	D 07	B 0	8 D	09	D	10	A
3 02 C 03 A	04 [) 05	B 06	D						_

गांशा [WRITTEN]

- The word etiquette has a French origin which means the rules of correct behaviour in society. On the other hand, manners is the behaviour that is considered to be polite in a particular society or culture.
- B. As a social being we have to be alert as to how we should act in front of others. We should always be aware what would be the effect of our behaviour towards others. We should respect others and their views. We should show proper respect to our elders. While in public places we should maintain serenity. We should also be punctual where time is concerned. While eating we should show proper manners. When we are waiting for something we should stand in a queue. Showing proper etiquette is the foremost quality of a well mannered person.
- C. It is necessary that we learn the rules of behaviour and practice them on a regular basis. Different social occasions have different manners. We do not show the same kind of manners in a wedding reception and a debating cluB. Hence it is important that we Learn our manners heforehand.
- It is universally acknowledged that etiquette and manners tend to vary from culture to culture and society to society. The manners in a wedding reception, for example, will not always do in a debating club.

02 Do it yourself.

দেশের শীর্ষ কৃষিবিদদের সমন্বিত প্রয়াস...

সকল কৃষি বিশ্ববিদ্যালয় ভর্তির অপ্রতিদ্বন্দ্বী সহায়িকা-

- AGRI-EXAM [সকল কৃষি বিশ্ববিদ্যালয় ভর্তির প্রশ্নব্যাংক]
 - NETWORK হাইলাইটস [শেষ মুহূর্তের প্রস্তুতির জন্য]
- NETWORK মডেল টেস্ট [অনুশীলন পর্ব]

কৃষি বিশ্ববিদ্যালয় ভর্তিতে আমরা কৃষিবিদ আছি তোমাদের পাশে...

page: network agriculture admission

group: network agriculture admission

কৃষি তথ্য সেবা : 01856-46 62 00 : 01916-19 82 25

CHEMISTRY PLUS ও METWORK সমন্বিত উদ্যোগ...

মেডিফেল देखिनियादि